1,869 research outputs found

    Exploring CP Violation in the MSSM

    Full text link
    We explore the prospects for observing CP violation in the minimal supersymmetric extension of the Standard Model (MSSM) with six CP-violating parameters, three gaugino mass phases and three phases in trilinear soft supersymmetry-breaking parameters, using the CPsuperH code combined with a geometric approach to maximize CP-violating observables subject to the experimental upper bounds on electric dipole moments. We also implement CP-conserving constraints from Higgs physics, flavour physics and the upper limits on the cosmological dark matter density and spin-independent scattering. We study possible values of observables within the constrained MSSM (CMSSM), the non-universal Higgs model (NUHM), the CPX scenario and a variant of the phenomenological MSSM (pMSSM). We find values of the CP-violating asymmetry A_CP in b -> s gamma decay that may be as large as 3%, so future measurements of A_CP may provide independent information about CP violation in the MSSM. We find that CP-violating MSSM contributions to the B_s meson mass mixing term Delta M_Bs are in general below the present upper limit, which is dominated by theoretical uncertainties. If these could be reduced, Delta M_Bs could also provide an interesting and complementary constraint on the six CP-violating MSSM phases, enabling them all to be determined experimentally, in principle. We also find that CP violation in the h_{2,3} tau+ tau- and h_{2,3} tbar t couplings can be quite large, and so may offer interesting prospects for future pp, e+ e-, mu+ mu- and gamma gamma colliders.Comment: 36 pages, 32 figure

    Estimating the annihilation decay B_s -> rho gamma with factorization

    Get PDF
    The branching ratio for the rare two-body B_s -> rho gamma decay is calculated using the factorization assumption. This transition is dominated by the annihilation diagrams and, in principle, prone to receiving substantial contributions from new physics. We estimate Br(B_s -> rho gamma) = 1.6 x 10^-9 within the Standard Model and investigate the sensitivity of this decay mode to the effects of two new physics scenarios: vector quark model and supersymmetry. Our results indicate that the shift in branching ratio is at most around 10% with the addition of vector quarks and is negligibly small in the constrained minimal supersymmetric extension of the Standard Model.Comment: 9 pages, 1 figur

    Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and “Cell Vision”

    Get PDF
    Until now, the results of nanotoxicology research have shown that the interactions between nanoparticles (NPs) and cells are remarkably complex. In order to get a deep understanding of the NP-cell interactions, scientists have focused on the physicochemical effects. However, there are still considerable debates about the regulation of nanomaterials and the reported results are usually in contradictions. Here, we are going to introduce the potential key reasons for these conflicts. In this case, modification of conventional in vitro toxicity assays, is one of the crucial ignored matter in nanotoxicological sciences. More specifically, the conventional methods neglect important factors such as the sedimentation of NPs and absorption of proteins and other essential biomolecules onto the surface of NPs. Another ignored matter in nanotoxicological sciences is the effect of cell “vision” (i.e., cell type). In order to show the effects of these ignored subjects, we probed the effect of superparamagnetic iron oxide NPs (SPIONs), with various surface chemistries, on various cell lines. We found thatthe modification of conventional toxicity assays and the consideration of the “cell vision” concept are crucial matters to obtain reliable, and reproducible nanotoxicology data. These new concepts offer a suitable way to obtain a deep understanding on the cell-NP interactions. In addition, by consideration of these ignored factors, the conflict of future toxicological reports would be significantly decreased

    Cosmic Birefringence as a probe of dark matter nature: Sterile neutrino and dipolar dark matter

    Full text link
    Recently, non-zero rotation angle β=0.30±0.11\beta=0.30^\circ\pm0.11^\circ (68% C.L.)(68\%\text{ C.L.}) [Phys. Rev. Lett. \textbf{128}, no.9, 091302 (2022)] has been reported for linear polarization of cosmic microwave background (CMB) radiation, which is known as cosmic birefringence (CB). We used this birefringence angle of CMB to study and distinguish different candidates of dark matter (DM), e.g., dipolar and sterile neutrino DM. We calculated CMB forward scattering by those probable candidates of DM to generate β\beta in the presence of primordial scalar fluctuations' background. We explicitly plotted bounds on the mass and electromagnetic coupling for different sectors of DM, sterile neutrino, and dipolar DM, and compared them with other experimental bounds. Regarding dipolar DM, our calculations put a bound on the Majorana magnetic dipole moment about M1.4×1014β0.30mDM1GeVe.cm\mathcal{M}\leqslant 1.4\times10^{-14}\,\frac{\beta}{0.30^\circ}\sqrt{\frac{m_{\text{\tiny{DM}}}}{1\,GeV}}\, e.\text{\,cm}. In the case of sterile neutrino DM, the bound on the mass and mixing angle was estimated at θ23.3(rad)2β0.30mDMKeV\theta^2 \leqslant 3.3\,(rad)^2\frac{\beta}{0.30^\circ}\,\frac{m_{DM}}{\rm{KeV}} , which can be a new constraint for sterile neutrino DM whose production mechanism is motivated by models with a hidden sector coupled to the sterile neutrino. Based on our results, if the constraint on the mass and the electromagnetic coupling for DM must be within the allowed region, none of the considered candidates can compensate for all the observed CB angles. We also discussed the maximum contribution of the CB angle via CMB forward scattering by different sectors of the dark matter.Comment: Published versio
    corecore